acACS: Improving the Prediction Accuracy of Protein Subcellular Locations and Protein Classification by Incorporating the Average Chemical Shifts Composition

نویسندگان

  • Guo-Liang Fan
  • Yan-Ling Liu
  • Yong-Chun Zuo
  • Han-Xue Mei
  • Yi Rang
  • Bao-Yan Hou
  • Yan Zhao
چکیده

The chemical shift is sensitive to changes in the local environments and can report the structural changes. The structure information of a protein can be represented by the average chemical shifts (ACS) composition, which has been broadly applied for enhancing the prediction accuracy in protein subcellular locations and protein classification. However, different kinds of ACS composition can solve different problems. We established an online web server named acACS, which can convert secondary structure into average chemical shift and then compose the vector for representing a protein by using the algorithm of auto covariance. Our solution is easy to use and can meet the needs of users.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks

Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...

متن کامل

Identifying anticancer peptides by using improved hybrid compositions

Cancer is one of the main causes of threats to human life. Identification of anticancer peptides is important for developing effective anticancer drugs. In this paper, we developed an improved predictor to identify the anticancer peptides. The amino acid composition (AAC), the average chemical shifts (acACS) and the reduced amino acid composition (RAAC) were selected to predict the anticancer p...

متن کامل

Prediction of protein subcellular locations using Markov chain models.

A novel method was introduced to predict protein subcellular locations from sequences. Using sequence data, this method achieved a prediction accuracy higher than previous methods based on the amino acid composition. For three subcellular locations in a prokaryotic organism, the overall prediction accuracy reached 89.1%. For eukaryotic proteins, prediction accuracies of 73.0% and 78.7% were att...

متن کامل

An overview on predicting the subcellular location of a protein

The present paper overviews the issue on predicting the subcellular location of a protein. Five measures of extracting information from the global sequence based on the Bayes discriminant algorithm are reviewed. 1) The auto-correlation functions of amino acid indices along the sequence; 2) The quasi-sequence-order approach; 3) the pseudo-amino acid composition; 4) the unified attribute vector i...

متن کامل

Improving Protein Localization Prediction Using Amino Acid Group Based Physichemical Encoding

Computational prediction of protein localization is one common way to characterize the functions of newly sequenced proteins. Sequence features such as amino acid (AA) composition have been widely used for subcellular localization prediction due to their simplicity while suffering from low coverage and low prediction accuracy. We present a physichemical encoding method that maps protein sequenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014